Prime divisors, analytic spread and filtrations
نویسندگان
چکیده
منابع مشابه
Prime divisors of palindromes
Abstract In this paper, we study some divisibility properties of palindromic numbers in a fixed base g ≥ 2. In particular, if PL denotes the set of palindromes with precisely L digits, we show that for any sufficiently large value of L there exists a palindrome n ∈ PL with at least (log log n)1+o(1) distinct prime divisors, and there exists a palindrome n ∈ PL with a prime factor of size at lea...
متن کاملPrime Filtrations of Monomial Ideals and Polarizations
We show that all monomial ideals in the polynomial ring in at most 3 variables are pretty clean and that an arbitrary monomial ideal I is pretty clean if and only if its polarization I p is clean. This yields a new characterization of pretty clean monomial ideals in terms of the arithmetic degree, and it also implies that a multicomplex is shellable if and only the simplicial complex correspond...
متن کاملPrime divisors in Beatty sequences
We study the values of arithmetic functions taken on the elements of a non-homogeneous Beatty sequence αn+ β , n= 1,2, . . . , where α,β ∈R, and α > 0 is irrational. For example, we show that ∑ n N ω ( αn+ β )∼N log logN and ∑ n N (−1)Ω( αn+β ) = o(N), where Ω(k) and ω(k) denote the number of prime divisors of an integer k = 0 counted with and without multiplicities, respectively. © 2006 Elsevi...
متن کاملSums of Prime Divisors and Mersenne Numbers
The study of the function β(n) originated in the paper of Nelson, Penney, and Pomerance [7], where the question was raised as to whether the set of Ruth-Aaron numbers (i.e., natural numbers n for which β(n) = β(n+ 1)) has zero density in the set of all positive integers. This question was answered in the affirmative by Erdős and Pomerance [5], and the main result of [5] was later improved by Po...
متن کاملPrime Divisors of Irreducible Character Degrees
Let G be a finite group. We denote by ρ(G) the set of primes which divide some character degrees of G and by σ(G) the largest number of distinct primes which divide a single character degree of G. We show that |ρ(G)| ≤ 2σ(G) + 1 when G is an almost simple group. For arbitrary finite groups G, we show that |ρ(G)| ≤ 2σ(G) + 1 provided that σ(G) ≤ 2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1984
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1984.113.451